

DATA SCIENCE SYLLABUS

Data Science Syllabus

COURSE OVERVIEW

Welcome to the 6-month Data Science program! This immersive journey is crafted to empower you with the skills and knowledge essential for success in the ever-evolving field of data science. Whether you're a beginner taking your first steps into this exciting domain or an experienced professional looking to deepen your understanding, this program is tailored to accommodate individuals with diverse backgrounds.

REQUIREMENTS

- No prior mobile development experience is required.
- A fully functional laptop that is able to access the internet.
- Minimal hardware requirements for laptop: [core i5, 256 SSD, and 16Gb of RAM]

RESOURCES

Python, R, Jupyter Notebooks, Google Colab, RStudio, Git, GitHub, etc.

COURSE CURRICULUM

WEEK	CONTENT
Week 1-2	 Overview of Data Science and its applications Basics of Python programming for data science Introduction to Jupyter notebooks
Week 3-4	 Data cleaning and preprocessing Exploratory Data Analysis (EDA) techniques Introduction to Pandas and NumPy
	Project 1: Data Cleaning and Exploration
	 Work with a real-world dataset Clean and preprocess the data Perform exploratory data analysis to gain insights
Week 5-6	Statistical Analysis with Python
	 Descriptive statistics and inferential statistics
	Hypothesis testing
	Probability distributions
Week 7-8	Introduction to Machine Learning
	 Supervised and unsupervised learning
	 Model training and evaluation
	Scikit-Learn for machine learning in Python
	Project 2: Predictive Modeling
	 Apply regression or classification algorithms on a dataset
	 Evaluate model performance using relevant metrics
Week 9-10	Advanced Supervised Learning
	 Decision Trees and Ensemble methods
	Feature engineering
	 Model tuning and optimization

Week 11-12	Unsupervised Learning and Dimensionality Reduction
	 Clustering algorithms (K-Means, Hierarchical)
	 Dimensionality reduction techniques (PCA)
	Project 3: Clustering and Dimensionality Reduction
	 Apply clustering algorithms on a dataset
	 Implement dimensionality reduction techniques
	Visualize and interpret results
Week 13-14	Introduction to Neural Networks
	 Basics of artificial neural networks
	 Building and training simple neural networks with
	TensorFlow/Keras
Week 15-16	Convolutional and Recurrent Neural Networks
	 Image recognition with CNNs
	Sequence modeling with RNNs and LSTMs
	Project 4: Deep Learning Project
	Develop a neural network model for image classification or
	sequence prediction
	 Fine-tune hyperparameters and evaluate model
	performance
Week 17-18	Introduction to Big Data
	 Understanding distributed computing
	Basics of Hadoop and Spark
Week 19-20	Data Engineering with SQL and NoSQL Databases
	SQL fundamentals
	 Introduction to MongoDB and other NoSQL databases
	Project 5: Big Data Processing
	 Work on a large dataset using Hadoop or Spark
	 Implement data engineering tasks with SQL and/or NoSQL
	databases

Week 21-22	Capstone Project Planning Define a real-world problem Plan the data science project lifecycle
Week 23-24	Model Deployment and Documentation Deploying machine learning models in production Creating documentation for models and projects
	 Capstone Project: End-to-End Data Science Project Apply all learned concepts to solve a real-world problem Develop and deploy a complete data science solution

ADDITIONAL INFORMATION

Our Data Science course not only provides a robust curriculum but also emphasizes mentorship and community collaboration. With dedicated instructors and a vibrant learner community, you'll benefit from personalized guidance and industry insights. Enjoy lifetime access to resources, exclusive webinars, and continuous support for a successful learning journey. Receive a completion certificate and join a data science community that values your success.