

MACHINE LEARNING & ROBOTICS SYLLABUS

Machine Learning Syllabus

COURSE OVERVIEW

Welcome to the FiguresHub Machine Learning & Robotics Program! This comprehensive sixmonth course is designed to equip you with the skills and knowledge needed to thrive in the exciting fields of machine learning and robotics. The program combines theoretical foundations with extensive hands-on projects, ensuring a well-rounded and practical learning experience.

REQUIREMENTS

- Newbie friendly
- A fully functional laptop that is able to access the internet.
- Minimal hardware requirements for laptop: [core i7, 256 SSD, and 16Gb of RAM]

RESOURCES

Python, Anaconda Distribution, Visual Studio Code, Jupyter Notebooks, Git, GitHub, OpenAl Gym, Stable Baselines, Robot Operating System (ROS), Gazebo Simulation Environment, etc.

COURSE CURRICULUM

WEEK	CONTENT
Week 1-2	Introduction to Machine Learning
	Overview of ML and its applications
	Basic terminologies: features labels training and testing
Week 3-4	Python Programming for ML
	Basics of Python programming
	 Introduction to key libraries: NumPy, Pandas, Matplotlib
Week 5-6	Data Processing
	Data Cleaning and handling missing values
	Feature scaling and normalization
	Data encoding for categorical variables
Week 7-8	Supervised Learning Algorithms
	Linear Regression
	Logistic Regression
	Decision Trees and Random Forests
	Model Evaluation and metrics
Week 9-10	Unsupervised Learning Algorithm
	K-Means Clustering
	Hierarchical Clustering
	Principal Component Analysis (PCA)
Week 11-12	Neural Network Language and Deep Learning
	Introduction to neural network
	Building and training neural network
	Deep learning architecture: CNNs and RNNs

Week 13-14	Natural Language Processing
	Introduction to NLP
	Text processing and sentiment analysis
	Introduction to computer vision
	Image preprocessing and object detection
Week 15-16	Reinforcement Learning
	Basics of reinforcement learning
	Markov Decision Processes
	Q-learning and DeeQ Networks (DQN)
	Application of reinforcement learning
Week 17-18	Introduction To Robotics
	Basics of robotics and its applications
	Types of robots and their components
	Robotic sensors and actuators
Week 19-20	Robot Programming and Simulation
	Programming robots using python
	Simulation environments (e.g., ROS, Gazebo)
Week 21-22	Robot Perception and Control
	Sensor data processing for robots
	Path planning and navigation
	Robots control systems
Week 23-24	Final Project and Presentation
	 Students works on a real world machine learning and
	Project presentation and demonstration
	Peer and instructor feedback

ADDITIONAL INFORMATION

Our Machine Learning and Robotics course not only provides a robust curriculum but also emphasizes mentorship and community collaboration. With dedicated instructors and a vibrant learner community, you'll benefit from personalized guidance and industry insights. Enjoy lifetime access to resources, exclusive webinars, and continuous support for a successful learning journey. Receive a completion certificate and join a dynamic machine learning community that values your success.